Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 6875, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519507

RESUMEN

Human tendons adapt to mechanical loading, yet there is little information on the effect of the temporal coordination of loading and recovery or the dose-response relationship. For this reason, we assigned adult men to either a control or intervention group. In the intervention group, the two legs were randomly assigned to one of five high-intensity Achilles tendon (AT) loading protocols (i.e., 90% maximum voluntary contraction and approximately 4.5 to 6.5% tendon strain) that were systematically modified in terms of loading frequency (i.e., sessions per week) and overall loading volume (i.e., total time under loading). Before, at mid-term (8 weeks) and after completion of the 16 weeks intervention, AT mechanical properties were determined using a combination of inverse dynamics and ultrasonography. The cross-sectional area (CSA) and length of the free AT were measured using magnetic resonance imaging pre- and post-intervention. The data analysis with a linear mixed model showed significant increases in muscle strength, rest length-normalized AT stiffness, and CSA of the free AT in the intervention group (p < 0.05), yet with no marked differences between protocols. No systematic effects were found considering the temporal coordination of loading and overall loading volume. In all protocols, the major changes in normalized AT stiffness occurred within the first 8 weeks and were mostly due to material rather than morphological changes. Our findings suggest that-in the range of 2.5-5 sessions per week and 180-300 s total high strain loading-the temporal coordination of loading and recovery and overall loading volume is rather secondary for tendon adaptation.


Asunto(s)
Tendón Calcáneo , Adulto , Humanos , Masculino , Tendón Calcáneo/fisiología , Fenómenos Biomecánicos , Contracción Isométrica/fisiología , Imagen por Resonancia Magnética , Fuerza Muscular , Ultrasonografía
3.
Sports Med Open ; 9(1): 83, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37673828

RESUMEN

BACKGROUND: High tendon strain leads to sub-rupture fatigue damage and net-catabolic signaling upon repetitive loading. While high levels of tendon strain occur in adolescent athletes at risk for tendinopathy, a direct association has not yet been established. Therefore, in this prospective longitudinal study, we examined the hypothesis that adolescent athletes who develop patellar tendon pain have shown increased levels of strain in advance. METHODS: In 44 adolescent athletes (12-17 years old), patellar tendon mechanical properties were measured using ultrasonography and inverse dynamics at four time points during a season. Fourteen athletes developed clinically relevant tendon pain (SYM; i.e., reduction of the VISA-P score of at least 13 points), while 23 remained asymptomatic (ASYM; VISA-P score of > 87 points). Seven cases did not fall into one of these categories and were excluded. Tendon mechanical properties of SYM in the session before the development of symptoms were compared to a randomly selected session in ASYM. RESULTS: Tendon strain was significantly higher in SYM compared to ASYM (p = 0.03). The risk ratio for developing symptoms was 2.3-fold higher in athletes with tendon strain ≥9% (p = 0.026). While there was no clear evidence for systematic differences of the force applied to the tendon or tendon stiffness between SYM and ASYM (p > 0.05), subgroup analysis indicated that tendon force increased prior to the development of symptoms only in SYM (p = 0.034). DISCUSSIO: The study provides novel longitudinal evidence that high tendon strain could be an important risk factor for patellar tendinopathy in adolescent athletes. We suggest that inadequate adaptation of tendon stiffness to increases in muscle strength may occur if adolescent athletes are subject to mechanical loading which does not  provide effective tendon stimulation.

4.
Med Sci Sports Exerc ; 53(12): 2565-2576, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34649260

RESUMEN

PURPOSE: The current study investigated the effects of long-term athletic training on the development of the triceps surae muscle-tendon unit in preadolescence. METHODS: Eleven preadolescent untrained children and a group of 21 artistic gymnastics athletes of similar age (9 ± 1.7 yr) and maturity (Tanner stages I and II) participated in the study. The measurements were conducted every 3 months for 1 yr, and training volume and duration of the athletes were documented. Plantar flexor muscle strength, Achilles tendon stiffness, maximum tendon strain, and gastrocnemius medialis morphometrics were measured by integrating kinematics, ultrasonography, and dynamometry. A linear mixed-effects model was used to analyze the investigated parameters. RESULTS: We found greater muscle strength (P < 0.001) in athletes compared with nonathletes but no differences in Achilles tendon stiffness (P = 0.252), indicating a training-induced imbalanced adaptation of muscle strength and tendon stiffness in preadolescent athletes. Although pennation angle (P = 0.490), thickness (P = 0.917), and fascicle length (P = 0.667) did not differ between groups, we found higher fluctuations in pennation angle and muscle strength over 1 yr in athletes. The imbalanced adaptation of muscle strength and tendon stiffness together with greater fluctuations of muscle strength resulted in greater tendon strain fluctuations over 1 yr (P = 0.017) and a higher frequency of athletes with high-level tendon strain (≥9%) compared with nonathletes. CONCLUSIONS: The findings indicate an increased mechanical demand for the tendon in preadolescent athletes that could have implications for the risk of tendon overuse injury. Therefore, we recommend the implementation of individual training approaches to preserve a balanced adaptation within the triceps surae muscle-tendon unit in preadolescent athletes.


Asunto(s)
Adaptación Fisiológica , Articulación del Tobillo/fisiología , Ejercicio Físico , Gimnasia/fisiología , Fuerza Muscular/fisiología , Tendón Calcáneo/fisiología , Preescolar , Humanos , Estudios Longitudinales , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología
5.
Scand J Med Sci Sports ; 31(8): 1708-1718, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33909297

RESUMEN

High-level patellar tendon strain may cause impairments of the tendon's micromorphological integrity in growing athletes and increase the risk for tendinopathy. This study investigated if an evidence-based tendon exercise intervention prevents high-level patellar tendon strain, impairments of micromorphology and pain in adolescent basketball players (male, 13-15 years). At three time points over a season (M1-3), tendon mechanical properties were measured using ultrasound and dynamometry, proximal tendon micromorphology with a spatial frequency analysis and pain and disability using VISA-P scores. The control group (CON, n = 19) followed the usual strength training plan, including sprint and change-of-direction drills. In the intervention group (INT, n = 14), three sessions per week with functional exercises were integrated into the training, providing repetitive high-magnitude tendon loading for at least 3 s per repetition. The frequency of high-level strain (ie, ≥9%) continuously decreased in INT, while tending to increase in CON since tendon force increased in both (p < 0.001), yet tendon stiffness only in INT (p = 0.004). In CON, tendon strain was inversely associated with tendon peak spatial frequency at all time points (p < 0.05), indicating impairments of tendon micromorphological integrity with higher strain, but not at M2 and M3 in INT. Descriptively, the fraction of asymptomatic athletes at baseline was similar in both groups (~70%) and increased to 100% in M3 in INT, while remaining unchanged in CON. We suggest that functional high-load tendon exercises could reduce the prevalence of high-level patellar tendon strain and associated impairments of its micromorphology in adolescent athletes, providing new opportunities for tendinopathy prevention.


Asunto(s)
Traumatismos en Atletas/prevención & control , Terapia por Ejercicio/métodos , Ligamento Rotuliano/lesiones , Esguinces y Distensiones/prevención & control , Tendinopatía/prevención & control , Adolescente , Traumatismos en Atletas/diagnóstico por imagen , Traumatismos en Atletas/terapia , Evaluación de la Discapacidad , Humanos , Masculino , Dimensión del Dolor , Ligamento Rotuliano/diagnóstico por imagen , Esguinces y Distensiones/diagnóstico por imagen , Esguinces y Distensiones/terapia , Tendinopatía/diagnóstico por imagen , Tendinopatía/terapia , Ultrasonografía
6.
Eur J Appl Physiol ; 120(12): 2715-2727, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32930859

RESUMEN

PURPOSE: Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle-tendon properties with jumping performance. METHODS: Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. RESULTS: Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. CONCLUSION: Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.


Asunto(s)
Tendón Calcáneo/fisiología , Rendimiento Atlético/fisiología , Movimiento/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Deportes/fisiología , Atletas , Niño , Femenino , Humanos , Contracción Isométrica/fisiología , Pierna/fisiología , Masculino , Postura/fisiología , Ultrasonografía/métodos
7.
Front Physiol ; 10: 963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31427983

RESUMEN

High mechanical strain is thought to be one of the main factors for the risk of tendon injury, as it determines the mechanical demand placed upon the tendon by the working muscle. The present study investigates the association of tendon mechanical properties including force, stress and strain, and measures of tendon micromorphology and neovascularization, which are thought to be indicative of tendinopathy in an adolescent high-risk group for overuse injury. In 16 adolescent elite basketball athletes (14-15 years of age) we determined the mechanical properties of the patellar tendon by combining inverse dynamics with magnetic resonance and ultrasound imaging. Tendon micromorphology was determined based on a spatial frequency analysis of sagittal plane ultrasound images and neovascularization was quantified as color Doppler area. There was a significant inverse relationship between tendon strain and peak spatial frequency (PSF) in the proximal tendon region (r = -0.652, p = 0.006), indicating locally disorganized collagen fascicles in tendons that are subjected to high strain. No such associations were present at the distal tendon site and no significant correlations were observed between tendon force or stress and tendon PSF as well as between tendon loading and vascularity. Our results suggest that high levels of tendon strain might associate to a micromorphological deterioration of the collagenous network in the proximal patellar tendon, which is also the most frequent site affected by tendinopathy. Neovascularization of the tendon on the other hand seems not to be directly related to the magnitude of tendon loading and might be a physiological response to a high frequency of training in this group. Those findings have important implications for our understanding of the etiology of tendinopathy and for the development of diagnostical tools for the assessment of injury risk.

8.
Front Physiol ; 10: 615, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31164838

RESUMEN

Knowledge regarding the effects of athletic training on the properties of muscle and tendon in preadolescent children is scarce. The current study compared Achilles tendon stiffness, plantar flexor muscle strength and vertical jumping performance of preadolescent athletes and non-athletes to provide insight into the potential effects of systematic athletic training. Twenty-one preadolescent artistic gymnastic athletes (9.2 ± 1.6 years, 15 girls) and 11 similar-aged non-athlete controls (9.0 ± 1.7 years, 6 girls) participated in the study. The training intensity and volume of the athletes was documented for the last 6 months before the measurements. Subsequently, vertical ground reaction forces were measured with a force plate to assess jumping performance during squat (SJ) and countermovement jumps (CMJ) in both groups. Muscle strength of the plantar flexor muscles and Achilles tendon stiffness were examined using ultrasound, electromyography, and dynamometry. The athletes trained 6 days per week with a total of 20 h of training per week. Athletes generated significantly greater plantar flexion moments normalized to body mass compared to non-athletes (1.75 ± 0.32 Nm/kg vs. 1.31 ± 0.33 Nm/kg; p = 0.001) and achieved a significantly greater jump height in both types of jumps (21.2 ± 3.62 cm vs. 14.9 ± 2.32 cm; p < 0.001 in SJ and 23.4 ± 4.1 cm vs. 16.4 ± 4.1 cm; p < 0.001 in CMJ). Achilles tendon stiffness did not show any statistically significant differences (p = 0.413) between athletes (116.3 ± 32.5 N/mm) and non-athletes (106.4 ± 32.8 N/mm). Athletes were more likely to reach strain magnitudes close to or higher than 8.5% strain compared to non-athletes (frequency: 24% vs. 9%) indicating an increased mechanical demand for the tendon. Although normalized muscle strength and jumping performance were greater in athletes, gymnastic-specific training in preadolescence did not cause a significant adaptation of Achilles tendon stiffness. The potential contribution of the high mechanical demand for the tendon to the increasing risk of tendon overuse call for the implementation of specific exercises in the athletic training of preadolescent athletes that increase tendon stiffness and support a balanced adaptation within the muscle-tendon unit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...